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SUMMARY

An improved moving-particle semi-implicit (MPS) method was developed for numerical simulations of
convective heat transfer problems. The MPS method, which is based on particles and their interactions,
is a fully Lagrangian particle method for incompressible �ows. A new Laplacian model and a new
method for treating boundary conditions were proposed to solve numerical di�culties resulting from
the original MPS method. Results of several numerical tests show the validity of the improved MPS
method with the proposed model and method.
The application of the present MPS method to Rayleigh–Benard convection phenomena demonstrated

the e�ectiveness of the proposed model and method on the numerical simulation of convective heat
transfer problems. The dependence of the Nusselt number on the Rayleigh number was in good agree-
ment with an empirical formula. The temperature contour and velocity distribution also agree well with
the simulation results obtained with other methods. The roll pattern developed in the horizontal �uid
layer as well as the convective heat transfer was successfully simulated with three-dimensional MPS
calculations. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is di�cult for Eulerian methods to analyse complex geometries and to treat viscous �uid
�ows without numerical di�usion caused by �uid convection. Lagrangian methods are other
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approaches to overcome these problems. A moving-particle semi-implicit (MPS) method [1]
is a deterministic Lagrangian method developed for simulating incompressible �uids. In this
method, governing equations are discretized based on particle interaction models representing
gradient, Laplacian and free surface. Computational grids are unnecessary. Based on the MPS
method, a combined grid and particle method, MPS-MAFL [2], which can easily solve �ow
problems with inlets and outlets, has been formulated. A two-�uid MPS method [3] has been
developed extensively for two-phase �uid problems. All these methods have been applied with
satisfying results in natural and engineering �elds.
However, the original Laplacian model [1] presented in the MPS method would overestimate

heat transfer when applied to an energy equation. We also found that it was di�cult for the
MPS method to obtain numerical stability for natural convection �ows with a low Reynolds
number or in an enclosure. In addition, the cut-o� radius de�ned in the gradient or the
Laplacian models cannot satisfy geometric boundaries because wall boundaries are simulated
by one-layer particles with zero velocities. To overcome these problems, in the present paper,
we will propose a new Laplacian model for the heat transfer along with a new treatment for
thermal and non-slip boundaries.
Rayleigh–Benard convection takes place in a horizontal layer, which is heated from the bot-

tom and cooled from the top. A stable conduction exists for this problem when the temperature
di�erence between the bottom and top boundaries is small enough. When a temperature dif-
ference is increased above a certain threshold, the static conduction becomes unstable against
any small disturbance, and the system then becomes unstable. Chandrasekhar presented a lucid
introduction and thorough coverage of the theory to this phenomenon [4]; and there have been
some reviews on experiments and numerical calculations in this particular �eld [5]. Recently,
new technologies have been applied to the study of the role of molecules in macroscopic
�ow phenomena, for example the molecular dynamics [6], the direct simulation Monte Carlo
[7] and the lattice Boltzmann method [8]. Most of these simulations were done in the Euler
framework. Smoothed particle applied mechanics, a grid-free Lagrangian method, was used to
simulate the Rayleigh–Benard convection to emphasize and discuss the connection between
molecular dynamics and continuum mechanics [9]. In this contribution, the MPS method with
a new Laplacian model and a new method for treating the boundary conditions will be used
to simulate Rayleigh–Benard convection with a range of Rayleigh number.

2. NUMERICAL MODELS AND METHODS FOR MPS

2.1. Governing equations in MPS method

Governing equations for incompressible �ows are mass, momentum and energy conservation
equations given as follows:

@�
@t
+∇ · (�u) = 0 (1)

Du
Dt

= −∇p
�
+ �∇2u+ F (2)

�cp
DT
Dt

= �∇2T − q (3)
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IMPROVED MPS METHOD 33

2.1.1. Kernel function. In MPS, the kernel function w(|rj − ri|; re) is chosen as [1]

w(|rj − ri|; re) =

⎧⎪⎪⎨
⎪⎪⎩

re
(|rj − ri|) − 1 (|rj − ri|¡re)

0 (|rj − ri|¿re)
(4)

n0 =
∑
j �=i
w(|rj − ri|; re) (5)

where re is the cut-o� radius. In the present MPS method, it is chosen to be 2:1�l, where
�l is the initial distance between two particles. With this kernel function, particle clusters
can be avoided since the value of kernel function is in�nity at |rj − ri|=0.

2.1.2. Gradient model. Assuming two particles i and j, which possess scalar quantities �i and
�j, respectively, the gradient in the MPS method is de�ned as [1]

〈∇�〉i= d
n0

∑
j �=i

�j −�i
|rj − ri|2 (rj − ri)w(| rj − ri|; re) (6)

where d is the number of the space dimension.
Equation (6) can be rearranged as follows:

〈∇�〉i= d
n0

∑
j �=i

�j −�′
i

|rj − ri|2 (rj − ri)w(|rj − ri|; re) (7)

where �′
i = min(�j). Equation (7) is tested to be able to improve numerical stability [1].

2.1.3. Laplacian model. The original Laplacian model in the MPS method is given by
Koshizuka and Oka [1]

〈∇2�〉i= 2d
n0�

∑
j �=i
(�j −�i)w(|rj − ri|; re) (8)

where

�=
∫
w(|rj − ri|; re)|rj − ri|2 dv∫

w(|rj − ri|; re) dv (9)

In two dimensions, parameter � should be

�=
2�

∫ ∞
0 w(|rj − ri|; re)|rj − ri|3 d|rj − ri|

2�
∫ ∞
0 w(|rj − ri|; re)|rj − ri|d|rj − ri|

≈
∫ re
R w(|rj − ri|; re)|rj − ri|3 d|rj − ri|∫ re
R w(|rj − ri|; re)|rj − ri|d|rj − ri|

(10)
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where

R=�l=
√
� (11)

However, it is found that this model would overestimate heat conduction when applied to
an energy equation. This will be demonstrated using the numerical test for heat conduction
in a homogenous square slab in Section 3.
As we know, the Laplacian model can be derived from the divergence of gradient as

〈∇2�〉i= 〈∇ · ∇(�)ij〉i (12)

where the divergence model in the MPS method is

〈∇ · �〉i= d
n0

∑
j �=i

(�j − �i) · (rj − ri)
|rj − ri|2 w(|rj − ri|; re) (13)

Combining the gradient model and the divergence model, we can obtain the new Laplacian
model:

〈∇2�〉i= 2dn0
∑
i �=j

�j −�i
|rj − ri|2w(|rj − ri|; re) (14)

In the original Laplacian model, it is necessary to use a parameter, �, which is derived with
the central limit theorem. However, mathematical inconsistency in the de�nition of � could
cause numerical di�culties in calculating the Poisson equation. In contrast, Equation (14)
enables us to solve the Poisson equation exactly.

2.1.4. Incompressible model. In the MPS method, each particle possesses the same mass.
Therefore, every particle number density n∗ should be constant and equal to n0. Otherwise,
we de�ne

n∗ + n′= n0 (15)

where n′ is the correction to the particle number density. The following can be derived:

1
�t

n′

n0
= −∇ · u′ (16)

u′ = −�t
�

∇pn+1 (17)

where u′ is the velocity correction value and n+ 1 means the next time step number. As a
result, we get the following pressure Poisson equation [1]:

〈∇2pn+1〉i= − �
�t2

〈n∗〉i − n0
n0

(18)

To improve calculation stability, especially for �ows in an enclosure, the equation is modi�ed
as [10]

〈∇2pn+1〉i= �1 ��t ∇ · 〈u∗〉 − �2 ��t2
〈n∗〉i − n0

n0
(19)
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with

�1 + �2 = 1 (20)

where the parameters �1 and �2 are chosen as 0.8 and 0.2, respectively, in the present calcu-
lations. u∗ is the temporal velocity.
Equation (19) can be solved by the incomplete Cholesky conjugate gradient (ICCG) method,

which is robust and fast for calculations with a large number of particles.

2.2. Time integration

The MPS method separates calculations into two stages, explicit and implicit stages, in each
time step. In the explicit stage, particles move with the viscosity and external forces that are
explicitly calculated by

u∗
i = u

n
i +�t(�∇2uni + Fi) (21)

r∗i = r
n
i +�tu

∗
i (22)

In the implicit stage, velocity is corrected with Equation (17) to keep the conservation of
the momentum equation. Pressure is obtained with Equation (19) using the ICCG method.
Time step is controlled in the computation to satisfy the following Courant condition:

�t 6 0:2
�l
umax

(23)

where �l is the initial distance between two particles, and umax is the maximal velocity among
all particles.

2.3. Boundary conditions

The original method of treating boundary conditions in MPS simulates the wall by one-layer of
�xed particles with zero velocities. Other two-layer dummy particles are used for calculating
the number density of the wall particles to distinguish particles on the free surface from wall
particles in pressure Poisson equation. However, since the cut-o� radius for both gradient and
Laplacian models for the pressure Poisson equation is larger than �l, the cut-o� radius is not
in agreement with the geometric boundaries. In the original MPS method, the pressure and
velocity of a dummy particle are �xed as zero to solve this problem. Further, the velocities of
wall and dummy particles are de�ned as zero to retain the non-slip boundary condition when
calculating the viscosity force. However, zero velocity should be physically kept on the wall.
The same di�culty will be encountered in the case of the heat transfer calculations near the
wall.
To overcome such di�culties in treating boundary conditions, we de�ne one-layer wall

particles and �ctitious particles that are re�ected from the �uid particles by the wall, as
shown in Figure 1. Fluid particles interact with other �uid, wall and �ctitious particles in
the calculations of viscosity force and heat transfer. The �ctitious particles have the same
magnitude of velocities as the corresponding �uid particles, but in the opposite direction.
The thermal boundary condition can be easily satis�ed with this treatment. For the Dirichlet
boundary condition, the average temperature of a �uid particle and the corresponding �ctitious
particle is kept the same as the temperature value on the wall. For the Neumann boundary
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Figure 1. Numerical treatment of thermal and velocity boundary conditions.

Figure 2. Numerical treatment of pressure boundary conditions.

condition, the temperature of the �ctitious particle is the same as that of the corresponding
�uid particle.
For the pressure Poisson equation, only �uid and one-layer wall particles are calculated

using the ICCG method. Pressure homogeneous Neumann boundary condition is applied be-
tween one-layer wall particles and two-layer dummy particles. Figure 2 shows the treatment of
the pressure boundary condition for the �uid particle i, where j is the wall particle that lies in
the cut-o� circle of particle i, and the particle j′ lies at a distance of �l in the normal direc-
tion to the wall boundary from wall particle j. According to the pressure Neumann boundary
condition, the pressures of particles j and j′ should be the same. Particle i will interact with
particle j′ in both the pressure gradient model and the pressure Poisson equation.
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3. NUMERICAL TESTS FOR IMPROVED MPS METHOD

Three numerical tests were performed to demonstrate the e�ectiveness of our improved MPS
method described above. In this section, the results of numerical tests were presented in
comparison with exact analytical solutions.

3.1. Heat conduction in a square slab

Heat conduction in a homogeneous square slab was simulated with an initial sinusoidal tem-
perature distribution. The top and bottom edges and lateral sides were assumed to be adiabatic
and isothermal, respectively. For this problem, the exact solution is given by Cleary [11]

T (x; y; t)= sin
(�x
l

)
exp

[
−

(�
l

)2
�t

]
(24)

where l is the length of the slab and � is the thermal di�usivity. In the present simulation,
the slab was modelled by a particle array of 40× 40 with l=0:1 m and �=0:1 m2 s−1. The
results are shown in Figures 3(a) and (b) in comparison with ones obtained using the original
Laplacian model. As is seen from the �gures, the original Laplacian model overestimates the
heat transfer; however, using the new Laplacian model, the simulation results agree well with
the analytical solutions, and the errors in temperature are less than 1% in the simulation.

3.2. One-dimensional heat penetration

A one-dimensional heat penetration into a semi-in�nite medium [12] was also calculated.
The medium was represented by a particle array of 1000 × 20 with a thermal di�usivity
of 18:7 × 10−6 m2 s−1. The initial temperatures of the wall and medium were 0 and 20◦C,
respectively. Figure 4 shows the simulation result compared with the exact solutions at 5 s.
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Figure 3. Comparison of temperature for heat conduction in a homogeneous square slab.
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Figure 5. Time-dependent velocity pro�le in Poiseuille �ow in a parallel plate channel.

As can be seen, there is good agreement between them. This is an accuracy typically seen
throughout the simulation.

3.3. Poiseuille �ow in a parallel plate channel

A simulation was performed for a Poiseuille �ow in a parallel plate channel at a low Reynolds
number. A periodic boundary condition was assumed at the channel inlet and exit, while the
wall boundaries were set to be non-slip. The series solution for the time-dependent behaviour
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of this Poiseuille �ow is expressed by Morris et al. [13]

uy(x; t)=
F
2�
y(y − l) +

∞∑
n=0

4Fl2

��3(2n+ 1)3
sin

(�x
l
(2n+ 1)

)
exp

(
− (2n+ 1)

2��2

l2
t
)

(25)

where x is the coordinate in the �ow direction, y is the coordinate normal to the plate, F is
the driven body force, l is the channel width and � is the kinematic viscosity. In the present
simulation, l=1:0 × 10−3 m, �=1:0 × 10−3 m2 s−1, and F =0:2 × 105 m s−2 were chosen.
A �ow channel with a length of 0:5 × 10−3 m length and �uid density of 1:0 × 103 kg m−3

was modelled by a particle array of 20×40. The results of calculations of the velocity pro�le
at x=0:25× 10−3 m are shown in Figure 5. Comparison with the analytical results indicates
excellent agreement.

4. NUMERICAL SIMULATIONS OF RAYLEIGH–BENARD CONVECTION

4.1. Analytical model

Rayleigh–Benard convection in a horizontal layer was simulated with the Boussinesq approx-
imation using present MPS method. The external volume force in Equation (2) is expressed
by the buoyancy force [14]

F=�g(T − Tr) (26)

where F is the acceleration due to gravity, Tr is the reference temperature that is equal to the
average value of the top and bottom temperature, and � is the thermal expansion coe�cient.
Periodic boundary conditions were applied for the lateral walls. The thermal and non-slip

boundary conditions of upper and bottom walls were kept with �ctitious particles obtained
by the re�ection of the �uid particles according to the walls. The value of the �ctitious
particle’s velocity was equal to the re�ected �uid particles while the direction was opposite.
The temperature of the �ctitious particle was chosen to keep the wall temperature constant.
Fluid particles interacted with other �uid, wall and �ctitious particles.
The linear stability theory has shown that the critical wave number kc for Rayleigh–Benard

convection between two rigid boundaries is 3.117 [15], which results in the following critical
Rayleigh number:

Rac =
g��TH 3

��
=1708 (27)

where H and �T are the height and the temperature di�erence between the upper and bottom
walls, respectively. The horizontal dimension of the roll is determined by the wavelength
�c = 2�=kc = 2:016, which implies the aspect ratio with which the convection roll most readily
develops. In the present simulations, therefore, the horizontal layer �lled with air, of which
Prandtl number is 0.71, was modelled by a two-dimensional geometry with an aspect ratio
H=L of 0.5. The �uid particles in the horizontal layer were represented by a particle array of
80× 41 including the inner wall particles.
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A stable conduction exists for this problem when the temperature di�erence between the
bottom and top boundaries is small enough. However, when the temperature di�erence is
increased above a certain threshold, the static conduction becomes unstable against any small
disturbance, and the system then becomes unstable. Calculations started from a static state
except for the pressure �eld, which was perturbed as

p(x; y)=
[
1 +

��g�Ty
2

(
1− y

H

)][
1 + 0:001 cos

(
2�x
L

)]
(28)

4.2. Calculation of results and analysis

Cell patterns, the critical Rayleigh number and heat �ux appear the most interesting aspects
of research regarding Rayleigh–Benard convection. Present simulations showed the roll pat-
tern; according to linear theory, the width of rolls should be equal to the wavelength of
the disturbance [6]. This means that there should be two cells developed in two-dimensional
simulations, and the present simulations showed two cells developed after the �uids were
steady.
The enhancement of the heat transfer can be described by the Nusselt number:

Nu=1+
〈uyT 〉
��T=H

(29)

where uy is vertical velocity, � is thermal di�usivity and 〈·〉 the average over the whole �ow
domain. Figure 6 shows heat transfer transient from conduction to convection as the Rayleigh
number increases. When the Rayleigh number is less than 2000, the averaged Nusselt number
is almost equal to 1.0, which means that heat conduction is dominant at this stage. When
the Rayleigh number is larger than 2000, the averaged Nusselt number increases rapidly.
Mainly, heat transfer changes from conduction to convection. Figure 7 shows the velocity
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Figure 6. Heat transfer near critical Rayleigh number.
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Figure 7. Velocity distribution of Rayleigh–Benard convection (Ra=1700 and 2000).
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Figure 8. Dependence of Nusselt number on Rayleigh number.

distributions with Rayleigh numbers of 1700 and 2000. It can be seen that convection starts
when the Rayleigh number is larger than 2000. Our results suggest that the critical Rayleigh
number ranges between 1700 and 2000, which is consistent with the critical Rayleigh number
based on Equation (27) of the linear stability theory.
The empirical formula of the dependence of the Nusselt number on the Rayleigh number

in the rigid boundary case is [12]

Nu=1:56(Ra=Rac)0:296 (30)

where

Ra=
��TgH 3

��
(31)

This empirical formula well represents heat transfer in Rayleigh–Benard convection with mod-
erate Rayleigh numbers. In Figure 8, the Nusselt number as a function of the Rayleigh number
is compared between the present simulations and empirical formulae. Agreement is found at
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Figure 9. Velocity distribution and temperature contour of Rayleigh–Benard convection
(Ra = 2500; 5000; 10 000 and 30 000).

Rayleigh numbers between 5000 and 20 000, which is consistent with the results obtained
by the lattice Boltzmann method [16]. The comparison indicates that the present MPS can
reasonably predict the development of heat transfer in Rayleigh–Benard convection. Figure 9
shows steady velocity distribution and temperature contours, from which it can be concluded
that the temperature gradient near the bottom and top boundaries increases as the Rayleigh
number increases.
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Figure 10. Oscillatory state of Rayleigh–Benard convection (Ra = 50 000).

The two-dimensional convection pattern characterized by the rolls is unstable at higher
Rayleigh numbers. Previous work has shown that Rayleigh–Benard convection would evolve
into an oscillatory state if the simulation starts from a static conductive state with Ra¿30 000
[16]. These phenomena are observed in present simulation when the Rayleigh number is
50 000, as shown in Figure 10.
The MPS method is a fully Lagrangian method, and so can be used to observe details of

the transient �ow of cells. Figure 11 shows the start and development of Rayleigh–Benard
convection at Ra=50000. At the beginning, a dextral cell is developed in the lateral sides.
Clockwise and dextral cells develop in the inner left-upper and right-bottom corners, respec-
tively. This can be observed in the simulation result at 0:75 s. From 0.75 to 0:85 s, these two
inner cells join in the enhancement of the heat transfer. This coalescent inner cell continues
growing larger and rotating before 1:0 s. After 1:0 s, the size of the inner and side cells does
not change signi�cantly; however, both these cells rotate all the time until a steady state is
achieved, which can be seen from the results at 1.25 and 1:75 s.
Three-dimensional simulations were also performed to demonstrate the e�ectiveness of the

improved MPS on the simulation of Rayleigh–Benard convection. The horizontal layer was
modelled by a three-dimensional geometry with an aspect ratio of 2:2:1 (H :W :L). In the
calculation, Rayleigh number and Prandtl number were �xed as 6000 and 0.71, respectively.
Two particle arrays, 40×40×21 and 60×60×31 including inner wall particles, were tested to
investigate the e�ect of special resolution on simulation results. Figures 12 and 13 show the
steady temperature contour at the middle height of the horizontal layer and the steady velocity
distribution, respectively. The results were obtained using the particle array of 60×60×31. As
shown in these �gures, horizontal roll cells developed in the �uid layer after the achievement
of a steady state under the present conditions. Nusselt numbers obtained with these two

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:31–47
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Figure 11. Velocity distribution of Rayleigh–Benard convection at selected time intervals (Ra = 50 000).

particle-array arrangements were 2.093 and 2.151, respectively. The empirical formula yields
Nu=2:262. These mean that the error between simulations and the empirical formula would
decrease as the number of particles used in the simulation increases. On the other hand, there
is less di�erence in the roll patterns appearing in the horizontal layer between two results
obtained by di�erent particle-array arrangements. The simulation results on the roll pattern
were in good agreement with those obtained by other numerical methods [17].

5. CONCLUSION

In this paper, we presented an improved MPS method using a new Laplacian model and
a new method of treating boundary conditions for numerical simulations of convective heat
transfer problems. Several numerical tests indicated the validity of the present model and
method for the heat transfer and viscous �ow problems by comparisons with exact solutions.
Rayleigh–Benard convection with di�erent Rayleigh numbers was also successfully simulated.
The simulation results were consistent with those obtained by previous studies and linear the-
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Figure 12. Steady temperature contour of Rayleigh–Benard convection at the middle height of horizontal
plane (Three-dimensional simulation with Ra = 6000).

Figure 13. Steady velocity distribution of Rayleigh–Benard convection
(Three-dimensional simulation with Ra = 6000).
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ory. Dependence of the Nusselt number on the Rayleigh number agreed well with an empirical
formula. The steady temperature contour and velocity distribution agreed well with other sim-
ulation results. The start and development of Rayleigh–Benard convection can be reproduced
reasonably with the present MPS method. The roll pattern developed in the horizontal �uid
layer as well as the convective heat transfer was successfully simulated with three-dimensional
MPS calculations. It is thus expected that our improved MPS method presented here will be
a powerful tool to analyse convective heat transfer problems.

NOMENCLATURE

cp speci�c heat at constant pressure (J kg−1K−1)
d spatial dimensions
F external volume force or driven force (m s−2)
H height (m)
k thermal conductivity (W m−1k−1)
l; L length (m)
n0 initial number density
n∗ temporary number density
Nu Nusselt number
p pressure (Pa)
q energy transfer rate per unit volume (W m−3)
r position vector (m)
Ra Rayleigh Number
re cut-o� radius of the kernel function
T temperature (K)
t time (s)
u velocity (m s−1)
v volume (m3)
w kernel function
W width (m)

Greek letters

�1; �2 tuning parameters in the Poisson equation
� thermal expansion
� tuning parameter in the Laplacian model
’ arbitrary vector variable
� arbitrary scalar quantity
� density (kg m−3)
� kinematic viscosity (m2 s−1)
�l initial distance between two particles
�t time step size (s)

Subscripts

i; j particle number
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